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Invariant States of a Thermally Conducting Barrier 
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For an infinite one-dimensional system representing a thermally conducting 
barrier and two semi-infinite reservoirs which it separates, we prove the exis- 
tence of a unique stationary probability distribution, to which essentially any 
initial distribution converges for large times. 
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1. I N T R O D U C T I O N  

A central problem in nonequil ibr ium statistical mechanics  concerns the 
microscopic description of nonequil ibrium steady-state phenomena  such as 
heat  flow or fluid flow. The ultimate goal is, perhaps, a formula, ~i la Gibbs, 
for the measures providing such a description. At present, such a goal is 
quite distant. Indeed,  in most  cases, for example that of fluid flow past a 
fixed obstacle, and setting aside questions of uniqueness and formula, it is 
not  even clear mathematical ly  that a stat ionary probabil i ty distribution on 
microscopic states exists. (On the level of the Bol tzmann equation, the 
existence of stat ionary distributions for flow past  an obstacle has recently 
been established. (1)) 

We here consider a simple model:  a one-dimensional  infinite system 
representing a region A and  two semi-infinite reservoirs separated by A. 
Each  reservoir contains an "ideal gas" of atoms which flow into A and 
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interact there with molecules confined inside .A. The equilibrium case in 
which the reservoirs have the same temperature and density was studied in 
Ref. 2. We are concerned here with the nonequilibrium situation in which 
the left reservoir is described by different parameters from the right--for 
example, the temperature or density (or both) may differ. To every choice 
of the density and velocity distribution of incoming particles for the two 
reservoirs, we prove that there corresponds a unique stationary probability 
measure for the entire infinite system (provided zero-velocity particles are 
not allowed). At the same time, we show that the system in A has a unique 
stationary probability distribution, to which every initial distribution in A 
converges as the time t ~ oe (convergence to the nonequilibrium steady 
state). 

We proceed as follows: In Section 2 the model is described in more 
detail, with particular emphasis on the Markov process describing the 
evolution in A. In Section 3, the key technical estimates on the distribution 
in A at time t, starting from an arbitrary initial distribution without zero 
velocity particles, are obtained. These estimates, uniform at t, are used in 
Section 4 to prove the main results: Theorem 4.1, Corollary 4:3, Theorem 
4.5, and Remark 4.6. 

2. THE MODEL 

We consider a one-dimensional system consisting of a region A = 
[ - L / 2 ,  L/2] of length L separating two reservoirs. There are two species 
of particles: a finite number J of molecules which are confined to A, 
undergoing elastic collisions at its walls, and atoms which pass freely 
through the walls of A. The molecules and atoms have the same mass, all 
collisions between particles are elastic, and no other forces act. Since an 
atom trapped between molecules will behave like a molecule, we assume 
that the molecules are adjacent. 

The state space X within A is a union of n-particle state spaces: 

X =  0 X n  
n = J  

Explicitly X n --- I n • Qn • Vn, where V is the one-particle velocity space, Qn 
is position space, 

Qn = {(q, . . . . .  q n l - L / 2  <~ q, <~ q2 ' ' "  <~ qn < L/2}  

and I n = {1,2 . . . . .  ( n -  J +  1)}; the index i r I,, specifies which particle 
in A is the left-most molecule. We take V = 0~\{0} for reasons discussed in 
Remark 2.4 below. 

The regions A+_ = {q] + q  > L/2}  are reservoirs; we consider only 
reservoir atoms which are initially moving toward A. Let ~2 denote the 
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space of all initial reservoir states, with P the probability measure on fL P is 
specified as follows: at time t = 0 the particles in A_+ are Poisson distrib- 
uted in space with density O • ; their velocities v satisfy 7- v > 0 and their 
speeds ]v I are independent of all positions and all other speeds and have 
distributions ~• where ~+ are probability measures on {v I v > 0}. We 
require that ~r• correspond to a finite flux of particles 

2 f +_ = 0+_ vdrr+_ < ~ (2.1) 

for definiteness we assume 

p+ > 0 (2.2) 

and 

f+  /> f_  (2.3) 

we need an additional technical restriction on the In the case f+  = f _  
number  of slow particles in the reservoirs: 

o~V-~/2dTr+ < oe (2.4) 

[The necessity of (2.4) is presumably an artifact of our proof.] 
Consider now the dynamics of the model. For every initial state y ~ X, 

initial reservoir configuration o~, and time t ~> 0, we wish to have a well- 
defined state x t =--- x ( y ,  ~o, t) E X .  There are three difficulties: 

(i) Certain ~0 lead to an infinite number  of particles entering A in 
finite time. The set of such ~o has P measure 0, however, so we may exclude 
them from fL 

(ii) The state space X we have defined is incorrect physically; the 
state at the moment  of a collision is not unique without tedious identifica- 
tions in X. We remedy this by assuming that x ( y ,  co, t) is right coiatinuous in 
t for fixed y, ~o, and we remove from X all points which are not points of 
right continuity for some x (y, ~0, t). 

(iii) The dynamics as described above do not determine the outcome 
of multiple collisions. We prescribe the behavior in such cases as follows: if 
the collision occurs at time t, we perturb the particle positions (but not 
velocities) just before t, so as to remove all degeneracy, find the state 
immediately after t, and take its limit as the perturbation is scaled to zero. 
(If several particles enter the collision on the same trajectory, the perturba- 
tion must respect the ordering of atoms and molecules.) In most cases the 
result is independent of the perturbation chosen, but this is not true when 
the collision involves a wall, one or more atoms, and one or more mole- 
cules. In this case we specify the perturbation explicitly and rather arbitrar- 
ily: for small e > 0, the perturbed trajectory of a particle with speed v 
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which is in A before the collision will strike the wail at time t -  cv; 
remaining degeneracy does not require explicit treatment. 

Conditions (i)-(iii) specify x ( y ,  co, t) completely. 
The well-defined dynamics and the measure P on f~ yield a Markov 

process P ' ( y [ d x )  on X. p ,  acts on Borel measures by 

S(dx) = f P (sldx)  (ds) 
and on Borel functions by 

( P'f)(Y) = s (Y [ dx) f(x) 

The main result of this paper is the existence of a unique invariant measure 
v for this process such that, for any if, ]k f l U -  vl] ~ 0  as t ~  m, where II li 
is the variation norm in measures. 

We close this section with a series of remarks which will be needed 
later in the paper. 

R e m a r k  2.1. The equality of the particle masses implies an alternate 
way to view the dynamics of our system. We may consider the particles 
as noninteracting except that (i) all particles are labeled as "a tom" or 
"molecule"; when two particles pass each other, they exchange labels, and 
(ii) particles carrying the molecule label are reflected elastically at the walls 
of A. The trajectory of such a noninteracting particle, inside A or the 
reservoirs, will be called a pulse. 

R e m a r k  2.2. We fix an initial measure ff on X and introduce a basic 
decomposition of the measure t,P t. Let N t denote the random variable on 
X • ~2 whose value at (y,  ~0) is the number  of pulses (or particles) in A at 
time t, given initial state y ~ X and ~0 ~ ~2. We write N, = Nat + Nb,, where 
N,, (respectively, Nbt ) counts the number  of pulses present in A at time t 
which entered A from the reservoirs at some time s > 0 (respectively, which 
have persisted since time t = 0). Finally, for a Borel set B c X, define 

ffta(B ) = (ff • P ) [ { x  t ~ B a n d N  m = 0}] 

g[(B) = (ff • P)[{x t E B and N m = 0}] 
so that I~P t = t*'~ = ff~. That  is, tZa t is the probability distribution on states of 
the system at time t arising from system histories for which all initial pulses 
have exited from A. 

Definition 2.3. We define two families of finite reference measures, 
one using only the velocities from A+ [which, by (2,2), must occur in any 
invariant state], the second using velocities from both reservoirs and, in the 
case f+  = f_ ,  with an enhanced probability of low-velocity particles: 
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(i) the measure ~r* and 7r on V, defined by 

d~*(v) = P+ dr+  (Ivl) 

d4(v) = [P+ tier+ (Ivl) + O- d~= (Ivl)] 

dvr(v) = g(lvl) d~@) 
where for w > 0 

w + l  if f+4=f_ 
g ( w )  = - 1 / 2  

w + Iwl if f+ = f _  

(ii) the measures X* and X n on Q, • V n, defined as the product of 
Lebesgue measure on Qn and (Tr*) n or (~r)" on Vn; 

(iii) the measures h* and ?~ on X, defined by 7t*](01•215 
~k]{i}• =~kn, for 1 ~< i ~< n - J +  1. 

Remark 2.4. We may vary our treatment of zero-velocity particles 
by choice of the velocity space V. Since the number of such particles in A, 
and their positions, are constants of the motion, we expect the invariant 
measures on the state space defined with V = R to be indexed by the set of 
probability measures on [._J,~>0 Q~ describing the locations of zero-velocity 
particles. In fact, this can easily be verified by the methods of this paper. 
For simplicity, we study in detail only the case V =  R\(O) where no such 
particles are present. 

3. ESTIMATES ON THE MEASURES/~pt 

Throughout this section we take/~ to be a fixed initial measure on X 
and Q the measure /~ • P on X • ~2. The discussion of the invariant 
measure in Section 4 requires two key estimates on the measure/~Pt, which 
we develop here. The first of these (Theorem 3.5) is essentially a tightness 
condition, O) and shows that neither a large number of particles nor 
arbitrarily slow particles tend to accumulate in A. The second (Theorem 
3.6) is an absolute continuity condition which shows similarly that particles 
do not tend to accumulate in increasingly small regions of X. Both these 
estimates come from the fundamental Lemma 3.1, which enables us to 
bound the probability that a given pulse persists in A through several 
reflections. 

To understand the following notations, used in the proof of Lemma 
3.1, it helps to visualize the process by identifying pulses with their 
trajectories in space-time R • R+ D A • N+, as in Fig. 1. Given times 
0 < T l < T 2, we let n_+ (T  1, T2) denote the number of pulses entering A 
from A_+ during the interval [TI, 7"2]. For t E [TI ,  T2] , let m,[T 1, 7"2] denote 
the number of pulses which (i) intersect A • [T 1, T2] and (ii) at time t, lie to 
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Fig .  1. I n t e r p r e t a t i o n  o f  J ,  m t, n + ,  a n d  n . 

the left of the lef t-most  molecule.  The  dynamics  imply that  mt[T l, T 2] is 
independent  of t; in particular,  

mT, E T1, T21 = mT~[ T , ,  T2] (3.1) 

Finally, let ~a/[ T 1, T2] denote  the o algebra on ~ (or on X • ~2) generated 
by  the velocities and  entry times of particles entering A during [ T 1 , T2]. 

I.emma 3.1. For  0 <  T ~ <  T 2 , l e t  F C X •  be the event that  the 
lef t-most  molecule is at the left wall at t ime T1 and the r ight-most  molecule 
at the right wall at t ime T 2. Then  there is an event  F o ~ ~ [TI,  T2] with 
F c F o and  with Q(F0) = P(Fo) --= ~/ depending only on T = T 2 - TI and 

satisfying 
(i) k o ~< ~/(T) < 1 for some k o > 0 and  all T > 0; 

(ii) there are constants  k t, k 2 > 0 such that  for sufficiently large T, 

kl if f + > f _  
1 -  ~I(T) > k2T_l/2 if f + = f _  

Proof. Let F 1 E d [ T 1, T 2] be the event that  n + [ T 1 , T2] ) J and that  
the last J pulses to enter A in [ T  l,T2] do so f rom A+,  say at times 
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t, < " �9 �9 < tj < T 2, and  with speeds ]vj] < L ( T  2 -  tj) -l .  Thus on F 7/ Fl ,  
these J pulses lie in A to the left of the right-most molecule at time T 2, so 
that 

mr2 [ t, r2 ]  > 1 (3.2) 

for any t < T 2. Certainly P(F1) --  h 1 depends only on T and hl(T ) is a 
strictly increasing function. 

N o w  let t o E [T  1, T2] be the last collision time of a molecule with the 
left wall. Using (3.1) we have 

n [to,T2] = mto[to,T2] = mT2[to,T2] (3.3) 

If  t o > t I then n [t o, T2] = 0, contradict ing (3.2), (3.3), so necessarily t o < t 1 
on F A F~. But then no pulses entering A f rom A+ after t o may  be reflected 
f rom the left wall before T 2, so that on F A F~, 

mT2[ to,T2] > n+[ to,T2] - J + l  (3.4) 

N o w  consider a stochastic process 

= n + [  s, T2] - n [ r2- s,T ] 

defined on (f~, P) for 0 < s < T. M describes a r andom walk on a one- 
dimensional  lattice with exponentially distributed jumping  times, with rates 
f +  and f _  for jumps  to the right and left, respectively. Observe that 
on F 1, M ( T  2 - tl) = J, while on F A F1, M ( T  2 - to) .<< J - 1 f rom (3.3), 
(3.4). Hence  F N F l C F 2, where F 2 E d [ T  l, T2], F 2 = F 1 A (w[ M ( s ) -  
M ( T  2 - t I ) = - 1  for some s, T > s >  T 2 - t l } .  But on F~, T 2 - t  1 is a 
stopping time for M(s), so P(F2[F1)  is bounded  by the probabili ty of a 
passage of M(s) through M(s) = - 1 in time T. F r o m  Ref. 4, Vol. I, p. 272 
and Vol. II, p. 60, P(F21F1) < 1 - h2(T ), where h2(T ) > 0 for all T > 0 
and  

h2(r) > (3.5) 
[ k T  -1/2 f o r s o m e k a n d l a r g e T ,  if f_  =f+ 

Finally, set F 0 = (f~\F1) L) F2; then F C F 0 and 

~ / ( r )  --- P ( r o )  = 1 - P ( F , )  + P(F1)P(FzIF,)  

= 1 - 

Then ~7(T) < 1 since hl(T),h2(T ) > 0 for T > 0, and ~ (T) />  infT-P(Fo) 
-- ko, easily seen to be strictly positive. The estimate (ii) follows from (3.5) 
and the monotonic i ty  of h~. 

In stating our  next result it is convenient  to fix a speed v* > 0 which 
serves to distinguish slow f rom fast particles. 



270 Farmer, Goldstein, and Speer 

Corollary 3.2. A pulse with speed v present in A at time t I can 
remain in A until time t 2 only if there occurs a certain event F E d ( t l , t 2 )  
which satisfies 

P ( F )  < ko20(v) v(t2-tO/2L (3.6) 

where k o is as in Lemma 3.1 and 

[ T t ( L / v )  if v < v* (3.7a) 

O(v) = [ B ~*/v if v > v* (3.7b) 

for some 3 , 0 < 3 <  1. 

Proof.  Let r be the maximal integer such that r < v( t  2 -  t l ) / 2 L .  
Apply Lemma 3.1 to each of the r -  1 passages from left to right that the 
pulse must make to survive until t 2, and let F be the intersection of the 
events F 0 thus obtained. Then 

P ( F )  = ~ ( t / l ) )  r - 1  

and (3.6), (3.7a) follow (for all v). This bound is not useful for large v 
because ~ ( T ) ~ I  as T ~ 0 .  Hence for v > v*, let p >/2 be the minimal 
integer so that w =- v / p  < v* and let r be the maximal integer such that 
r < w(t  2 - t l ) / 2 L .  We obtain F by applying the argument above to the 
r -  1 disjoint time intervals of length ( 2 p -  1 ) L / p w  in each of which the 
pulse makes p left to right trips. This yields 

P ( F )  = ~ p-w 

from which (3.7b) follows with 

( ~ L )  '/2 /3=  sup ~/ ~ -  
1.5<~<3 

Lack of uniformity in our estimates of the behavior of ~pt  can arise 
for a large number  of particles or, in some cases, for slow particles. We 
therefore say that a set K C X is bounded if (i) K c [..Jj<.n<.lvX,, for some N, 
and (ii) there is a minimum speed w > 0 such that ]vjl > w for all x = 
(i, ql, �9 . . , qn,vl . . . .  , %) E K and all j ,  1 < j < n. 

Corollary 3.3. For any initial/,,  le t / , [  be defined as in Remark 2.2. 
Then/,~ --> 0 in variation norm as t ~ ~ .  

Proof. We may find a bounded set K c X such that I~(X\K) ,  and 
hence also l I( it[ g\g)'bll < I I ~l x xxP'  II, is arbitrarily small. Thus it suffices to 
prove the corollary with /, replaced by /.7 =/*l,v. Suppose K C U , < N X ,  
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with m i n i m u m  speed w, as above.  N o w  ]I ~ 11 is the probabi l i ty  that  at least 
one of the initial pulses survives until t; by  Corol lary  3.2, 

[1/~[[1 ~ U k o 2 [  supO(v )~]  ~/2L 
v>~ w J 

We next  est imate the correlat ion functions of particles which enter A 
after  t = 0. For  this purpose  we extend the notat ion of R e m a r k  2.2: if 
A c Qn • Vn for n/> 1, and  x = (i, ql . . . .  , qm,v~ . . . .  , Vm) is the state of 
the system at t ime t, we let Nat(A ) denote  the n u m b e r  of n-tuples of dis- 
tinct indices (i I . . . . .  in) such that  (i) (qi,, . . . .  qi , - vi~ . . . . .  vi. ) E A.  and 
(ii) t he / j th  pulse entered A after  t ime t = 0, j = 1 , . . . ,  n. 

I_emma 3.4. For  each n > / J  there exists a constant  c n such that  for 
A C Q n X  V n, 

E ( N a t ( A ) )  < cn?tn(A) 

Here  E is the expecta t ion with respect  to Q. 

Proof .  We give a somewhat  informal  proof  which can easily be 
formalized,  e.g., by  a slight extension of Pa lm measure.  (5) Thus  for given 
q~, - �9 �9 qn, and  v I . . . . .  v~, let dA C X~ denote  the set 

II  [q ,qj + dq ] • I I  [v ,vj + dv ] 
J J 

We show that  

e(Uo,(aA)) < c, IIaqj (avj) = coX,(dA) (3.8) 
J 

where  ~r(dvj) = ~r([vj, vj + dvj]) with 7r as in Defini t ion 2.3. 
Consider  any  system history which contr ibutes to E ( N a t ( d A ) ) ,  and 

suppose that  in this history the pulse which is at  (qj, t)) at t ime t has been 
reflected kj t imes f rom the walls at + L / 2 .  Then  this pulse must  have 
entered A at t ime 9 -  tkJ(qJ'vJ )' where 

t k ( q , v )  = t - -  q / v - -  (2k + 1)L/2[v[  

more  precisely, it must  have  entered with velocity v in an interval [_+ vj, 
+ v) + d~] and  at some time between t~(q j ,v )  and  tb(qj  + dqj ,v) .  Let Gj 
be the event  that  such a pulse enters; the a priori probabi l i ty  of Gj is 
b o u n d e d  by  dqj'~(dvj) (see Defini t ion 2.3). 

We  assume for  nota t ional  convenience that  t 1 < t 2 < - - �9 < t n ; in fact  
our  est imate is independent  of ordering. Let /j = [ay,bj], where aj = t j  + 
( j  - 1)(t - t j ) / n  and bj = aj + (t - t j ) /n ,  and suppose that  the points t t 
with l > j par t i t ion /j into subintervals /jl . . . . .  /jm," We apply  Corol lary 
3.2 in / j r  to the pulse which entered at  ~, to p roduce  an event Fir ; all the 
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Here ]I I denotes the 
derived formulas 

e v e n t s  F i r  and Gj are independent (we treat dqj as infinitesimal). Then 

e(No,(aA)) <. ~ I" F;r n c; 
k 1 . . . .  , k~ ,=0  1 

< ko  ~4"-2) O(vj) k/2" dqj'k(dvj) 
j \ k = O  l 

<- cnlI dqj~(dvj) 
J 

length of the interval I and we have used the easily 

_ 

~-] mj < 2 n -  1 
j = l  

t - t j  
I/j~l = I b l -  n 

r 

1 < (const)g(v) 
O(v) ~ 

- - -  >~ kjL 
nlvjl 

for a > 0 

Theorem 3.5. For any initial measure ix and c > 0 there exists a 
bounded set K C X with Izpt(X\K) < c for all t/> 0. 

Proof. As in the proof of Corollary 3.3 we may reduce to the case in 
which/~ has support in a bounded set K 0 c X. Suppose K 0 C UJ%n<~uXn 
and that pulses in K 0 have minimum speed w > 0. By taking n = 1 and 
A = A • V in Lemma 3.4 we see that E(Nat ) is bounded uniformly in t, so 
that there exists N 2 with Q[Nat >/ N2] < E/2; hence if N = N 1 + N2, 

t~P~(n~>~NXn)< e /2  (3.8) 

By Lemma 3.4, we may choose u with 0 < u < w such that, if K is the event 
that there are at most N particles in A, all with speeds at least u, then 

(~e')(( U x,,~)<~e(Na,(Ax(vllvl<u))) 
J<~n4N 

< e /2  (3.9) 

(3.8) and (3.9) yield the theorem. 



Thermally Conducting Barrier 273 

Theorem 3.6. The measure /L~ satisfies /~t<<X, and dl~J/dX is 
bounded, uniformly in t, on each Xn. 

Proof.  This is an immediate consequence of Lemma 3.4, since for 
A C X ~ ,  

tL~(A) < E(N~t( .4))  <<. c ,X , (3 )  <~ c,?t(A) 

where .,~ = {(q, v) ~ Q, • V" I (i, q, v) E A for some i}. 

4. THE INVARIANT MEASURE 

We consider an initial measure /x on X and construct an invariant 
measure v as a Cesaro limit of the measures t~P t =/~2 + / @  The decay of/~[ 
(Corollary 3.3), the uniform absolute continuity of/22 (Theorem 3.6), and 
"tightness" (Theorem 3.5) yield a construction which avoids technicalities 
arising from the lack of continuity of p t. 

Theorem 4.1. There exists a Pt-invariant measure v on X, absolutely 
continuous with respect to 3,. 

Let/z be a Borel measure on X, write/~pt =/x a, + / x / a s  usual, Proof. 
and define 

~,~ = t-lJotl~2ds," a = a,b  

l i t  t ..1._ t t-l fat = v a v b = I~P s ds 

Then Corollary 3.3 implies that 

lim I I vt~ t[ = 0 (4.1) 

By Theorem 3.5 we may choose a sequence {Km} of bounded sets with 
K m ? X  and l~P'(Km) >1 1 - 1 /m ,  and hence v'(Km) >> 1 - 1 /m ,  for all t. 
(Here in fact we may take K m = (_Jj<n<UmXn for appropriate Nm. ) From 
(4.1) we have 

1 - etm <<. v~(Km) ~< 1 (4.2) 

with C t m ~ l / m  as t-~ ~c. 
Now by Theorem 3.6, dye(x )=  g'(x)d?t(x) ,  where Igt(x)] ~< cxm uni- 

formly in t >1 O, x ~ K m. The closed unit ball in L~176 is weak* 
compact, so that by a diagonal argument we may produce a sequence (~} 
and a Borel function g on X such that for any m and any f ~ LI[Km ;'~], 

;Kin g t f  dX J -~~ ;I,:~ g f  dX (4.3) 
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We define ~ by dv = g dX. Applying (4.3) with f = 1, and using (4.2), yields 
1 - 1/m <~ P(Km) < 1, so that p is a probability measure on X. 

Now let f be any bounded Borel function on X. We have, for any m, 

Lf,.',-Lfa. ifl (<t.,, + . . )  + ;,<.1/i,.1, 

+ f . f ( a . ' , -  a.) 
Thus from (4.1), (4.2), and (4.3) 

lira ( fdp5- ~fd~ <~ 2__ 
j-)~o JX m 

and since rn is arbitrary 

fxfdpt: j_+ ) fxfdv (4.4) 

Finally we check the invariance of p. For any bounded Borel function 
f,  from (4.4), 

fx(Ptf - f)dv= lim ( (Ptf - f)dvb 
j - ~  oe J X  

= j__>~limt-lCfO+'fCP'fdlx]dS-fo'(LP'fd#~)ds I s  Lj 0 ,Jx , 
=0 

We next show that the invariant measure is unique. In the proof of the 
key intermediate results, Lemma 4.2, we must control the speeds of parti- 
cles which enter A from A+. For this purpose let W c V be a fixed interval 
which is of the form W = [4u/5, u] for some u > 0, and which satisfies 
~z+ ( W ) >  0. Then for any nonempty time interval (a, b) and any j >/0, 
there is by (2.2) a nonzero probability that exact lyj  pulses enter A from A+ 
during (a, b) with speeds in W. Note also that these pulses, if reflected from 
the wall at - L/2, will return to L/2 in the time interval (a + 2 T, b + -~ T), 
where r = L/u. 

Lemma 4.2. There exists a set A c X of positive ~* measure such 
that for any initial measure/z of bounded support, and for some constant 
~7 > 0 and integer n > 0 depending only on the support of #~, ~ p , r  > TIX* 
on A. (Recall that X* was the reference measure constructed using only 
velocities from A+; see Definition 2.3.) 

Proof. Let the integer m ~> 1 be chosen so that m - l u  is a lower 
bound for particle speeds on the support of ix. Let F1 c ~2 be the event that 
no particles enter A during the time interval [0, 2mT], and assume that F l 
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occurs. Since each pulse in the initial state must hit each wall during 
[0, 2roT], precisely J initial pulses will survive in A until 2roT. 

Now let F 2 be the event that precisely J particles enter A from A+ 
during each time interval I~ = ((2m + k - 1)T,(2m + k - �89 for 1 < k 

< 2m + 1, all with speeds in W, and that no other particles enter A during 
[2roT, (4m + 2)T]. Assume that F 2 occurs. The pulses which enter A during 
I k cannot escape into A_, so they will return to the wall at L/2 during 
I~ + 2 -- ((2m + k + 1)T,(2m + k + 2)T). Thus during I = [(2m + 1)T, 

(4rn + 2)T] there will be at least J particles in the region [ - L / 2 , L / 2 ) c  

A, so that no molecule can reach L/2. It follows that all pulses which reach 
L/2 during I will escape from A. This must include all original pulses and 
all pulses which entered during I 1 , . . . ,  I2m, SO that, at time (4m + 2)T, A 
will contain precisely those pulses which entered during 12m+l" 

Now let n = (4m + 2) and let ~t* be the measure at time nT condi- 
tioned on the occurrence of F1 and F 2. The above argument shows that 
~* = Z -l~k*lA , where A C Xj is a set which depends only on our choice of 
the speed u and Z = X*(A) 4= 0. Then the conclusion of the lemma follows 
with ~ = Z -  ~P(F 1 C)/'2). 

Corol lary 4.3. The measure u is the unique Borel measure on X 
invariant under pt ,  or under the discrete process 1 ~m, where t; = p k r  for 
some integer k/> 1. 

Proof. Lemma 4.2 implies that no two invariant measures are mutu- 
ally singular, from which uniqueness follows. 

Now, given any Borel measure/~ on X, we write/~ = /~ab, + ~sing as the 
Lebesgue decomposition with respect to ~. Note that 

P, abs P t  << P (4.5) 

for any t > 0, that by Lemma 4.2, 

X*IA << ~ (4.6) 

and that for any/~ and sufficiently large n, 

(/zP nr )abs =~ 0 (4.7) 

Corollary 4.4. For any initial Borel measure /~, fl(/x,P*)singll--->0 as 
t ---) ~ .  

Proof. From (4.5), [l(IxP')singll~a for some a; suppose a > 0 .  By 
Theorem 3.5 we may choose a bounded K c X with II IzPt]x\Ktl < a/2 for 
all t, so that [L(/zPt),ingIKIl > a/2. Let ~7 and n be the constants of Lemma 
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4.2 for this K, let Z = X*(A), and choose t with 

[l(/~Pt)~ingll < a(1 + ~lZ/2) 

Then from (4.5), (4.6), and (4.7), 

Ll( ~P'+~ )+ingtl = Ill ( ~P' )+,~gp~ 
pnT = IIE(.P t)singlKPnT]singtl -,I-II[(~/'PZ)sinJX\K 3singil 

< 11( ~ e '  )si~gl KII0 - ~ Z )  + 11( . e '  )+i~glX\Ki[ 
= I I ( # P '  )+ingll -- nZll(.P' )+mg[gLI 

< a  1 +  - --~---- = a 

This contradiction proves the corollary. 

Theorem 4.5. For any initial measure t~, It t ~ P ' -  vtl-->0 as t o  ~ .  

Proof. Since f o r t = n T + 6 ,  

II ~P ' -  vii = l f(~P " T -  v)P+ll < II t*P " T -  vii 
it suffices to prove that H / ~ / 7 " - v l l ~ 0  as n--> oo, where t 7=  p r .  From 
(4.7) and Corollary 4.3, the Markov chain with transition probabi l i ty/7  is 
an ergodic Harris chain(6'7); it is aperiodic since the chain with transi- 
tion probability /Tk is ergodic for every positive integer k. Hence (6'7) 
for v-almost every y, lily/7" - v [ [  ~ 0 as n -+ oo. Write gn = 
II(/x/7")absLI- t(/x-fi')abs. NOW given e > 0, we can by Corollary 4.4 find an N 

such that II / z/TN - gutl < ~, and hence for n = N + m, 

II #/7" - ~N/Tmlk-- I1(~/TN- gN)/Tmll < c (4.8) 

But also 

H  /Tm-vLl= -<fxlt+/~ vll+ (y) 
which vanishes as m--> oo by the Lebesgue dominated convergence theo- 
rem. This, together with (4.8), proves the theorem. 

Remark 4.6. The existence of the invariant measure p for the system 
in A immediately implies the existence of an invariant probability measure 
for the entire infinite system, including the reservoirs. Let s denote the set 
of all reservoir states; points of ~ describe particles which are moving away 
from A as well as those which are moving toward A (zero-velocity particles 
are again excluded). We obtain an invariant probability measure on X x 
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as follows. Let • = {x = {xt}t~ ~} be the path space for the process p t ,  

and  let Pp be the measure on d arising from v (at time 0). P~ is s tat ionary 

( invar iant  under  t ime translation).  Consider  the na tura l  map q~ : ~ ---> X • 

carrying x to the state (x, ~) at time zero of the entire system whose 
evolution,  observed in A, yields x. Since ~ carries time t ranslat ion on ~ to 

the time evolut ion on X • ~, the probabi l i ty  measure P~ �9 q~- 1 on X • 

induced  by q~ is invariant .  This measure agrees with v • P on X • f~, and  is 
un ique ly  de termined by this constraint .  
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